Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 198(2): 145-153, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512345

RESUMO

Thoracic radiation therapy can cause endothelial injury in the heart, leading to cardiac dysfunction and heart failure. Although it has been demonstrated that the tumor suppressor p53 functions in endothelial cells to prevent the development of radiation-induced myocardial injury, the key mechanism(s) by which p53 regulates the radiosensitivity of cardiac endothelial cells is not completely understood. Here, we utilized genetically engineered mice that express mutations in p53 transactivation domain 1 (TAD1) (p5325,26) or mutations in p53 TAD1 and TAD2 (p5325,26,53,54) specifically in endothelial cells to study the p53 transcriptional program that protects cardiac endothelial cells from ionizing radiation in vivo. p5325,26,53,54 loses the ability to drive transactivation of p53 target genes after irradiation while p5325,26 can induce transcription of a group of non-canonical p53 target genes, but not the majority of classic radiation-induced p53 targets critical for p53-mediated cell cycle arrest and apoptosis. After 12 Gy whole-heart irradiation, we found that both p5325,26 and p5325,26,53,54 sensitized mice to radiation-induced cardiac injury, in contrast to wild-type p53. Histopathological examination suggested that mutation of TAD1 contributes to myocardial necrosis after whole-heart irradiation, while mutation of both TAD1 and TAD2 abolishes the ability of p53 to prevent radiation-induced heart disease. Taken together, our results show that the transcriptional program downstream of p53 TAD1, which activates the acute DNA damage response after irradiation, is necessary to protect cardiac endothelial cells from radiation injury in vivo.


Assuntos
Células Endoteliais , Coração , Lesões por Radiação , Proteína Supressora de Tumor p53 , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Dano ao DNA , Células Endoteliais/metabolismo , Coração/efeitos da radiação , Camundongos , Lesões por Radiação/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Radiat Res ; 197(3): 0, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724704

RESUMO

Delayed radiation myelopathy is a rare, but significant late side effect from radiation therapy that can lead to paralysis. The cellular and molecular mechanisms leading to delayed radiation myelopathy are not completely understood but may be a consequence of damage to oligodendrocyte progenitor cells and vascular endothelial cells. Here, we aimed to determine the contribution of endothelial cell damage to the development of radiation-induced spinal cord injury using a genetically defined mouse model in which endothelial cells are sensitized to radiation due to loss of the tumor suppressor p53. Tie2Cre; p53FL/+ and Tie2Cre; p53FL/- mice, which lack one and both alleles of p53 in endothelial cells, respectively, were treated with focal irradiation that specifically targeted the lumbosacral region of the spinal cord. The development of hindlimb paralysis was followed for up to 18 weeks after either a 26.7 Gy or 28.4 Gy dose of radiation. During 18 weeks of follow-up, 83% and 100% of Tie2Cre; p53FL/- mice developed hindlimb paralysis after 26.7 and 28.4 Gy, respectively. In contrast, during this period only 8% of Tie2Cre; p53FL/+ mice exhibited paralysis after 28.4 Gy. In addition, 8 weeks after 28.4 Gy the irradiated spinal cord from Tie2Cre; p53FL/- mice showed a significantly higher fractional area positive for the neurological injury marker glial fibrillary acidic protein (GFAP) compared with the irradiated spinal cord from Tie2Cre; p53FL/+ mice. Together, our findings show that deletion of p53 in endothelial cells sensitizes mice to the development of delayed radiation myelopathy indicating that endothelial cells are a critical cellular target of radiation that regulates myelopathy.


Assuntos
Traumatismos da Medula Espinal/radioterapia , Animais , Relação Dose-Resposta à Radiação , Células Endoteliais , Feminino , Proteína Glial Fibrilar Ácida/efeitos da radiação , Humanos , Masculino , Camundongos , Lesões Experimentais por Radiação , Radiação Ionizante , Medula Espinal/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor p53/efeitos da radiação
3.
Radiother Oncol ; 157: 155-162, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545252

RESUMO

BACKGROUND AND PURPOSE: Late cardiac toxicity is a major side effect of radiation therapy (RT) for breast cancer. We developed and characterized a mouse model of radiation-induced heart disease that mimics the dose, fractionation, and beam arrangement of left breast and chest wall RT. MATERIAL AND METHODS: Female wild-type (C57BL6/J) and atherosclerosis-prone apolipoprotein E-deficient (ApoE-/-) mice (on a C57BL/6J background) on regular chow were treated with 2 Gy × 25 fractions of partial-heart irradiation via opposed tangential beams to the left chest wall. The changes in myocardial perfusion and cardiac function of C57BL/6J mice were examined by single-photon emission computed tomography (SPECT) and echocardiography, respectively. In addition to SPECT and echocardiography, the formation of calcified plaques and changes in cardiac function of ApoE-/- mice were examined by dual-energy microCT (DE-CT) and pressure-volume (PV) loop analysis, respectively. The development of myocardial fibrosis was examined by histopathology. RESULTS: Compared to unirradiated controls, irradiated C57BL/6J mice showed no significant changes by SPECT or echocardiography up to 18 months after 2 Gy × 25 partial-heart irradiation even though irradiated mice exhibited a modest increase in myocardial fibrosis. For ApoE-/- mice, 2 Gy × 25 partial-heart irradiation did not cause significant changes by SPECT, DE-CT, or echocardiography. However, PV loop analysis revealed a significant decrease in load-dependent systolic and diastolic function measures including cardiac output, dV/dtmax and dV/dt min 12 months after RT. CONCLUSIONS: Following clinically relevant doses of partial-heart irradiation in C57BL/6J and ApoE-/- mice, assessment with noninvasive imaging modalities such as echocardiography, SPECT, and DE-CT yielded no evidence of decreased myocardial perfusion and cardiac dysfunction related to RT. However, invasive hemodynamic assessment with PV loop analysis indicated subtle, but significant, changes in cardiac function of irradiated ApoE-/- mice. PV loop analysis may be useful for future preclinical studies of radiation-induced heart disease, especially if subtle changes in cardiac function are expected.


Assuntos
Coração , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Fracionamento da Dose de Radiação , Ecocardiografia , Feminino , Coração/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...